ASSP

Fractional-N PLL Frequency Synthesizer

MB15F88UL

■ DESCRIPTION

The Fujitsu MB15F88UL is Fractional-N Phase Locked Loop (PLL) frequency synthesizer with fast lock up function.

The Fractional-N PLL operating up to 2600 MHz and the integer PLL operating up to 1200 MHz are integrated on one chip.

The MB15F88UL is used as charge pump which is well-balanced output current with 1.5 mA and 6 mA selectable by serial data, direct power save control and digital lock detector. In addition, the MB15F88UL adopts a new architecture to achieve fast lock.

The new package (Thin Bump Chip Carrier20) decreases a mount area of the MB15F88UL more than 30% comparing with the former B.C.C.16 (for dual PLL, MB15F08SL).

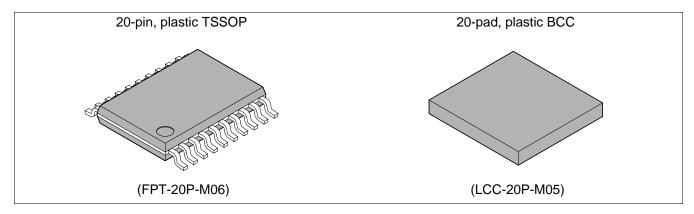
The MB15F88UL is ideally suited for wireless mobile communications, such as W-CDMA.

■ FEATURES

High frequency operation : RX synthesizer : 2600 MHz Max

TX synthesizer: 1200 MHz Max

• Low power supply voltage : Vcc = 2.7 V to 3.6 V


• Ultra Low power supply current : Icc = 6.0 mA Typ (Vcc = Vp = 3.0 V, Ta = +25 °C, SW = 0 in TX and RX

locking state)

23-bit shift register input control

(Continued)

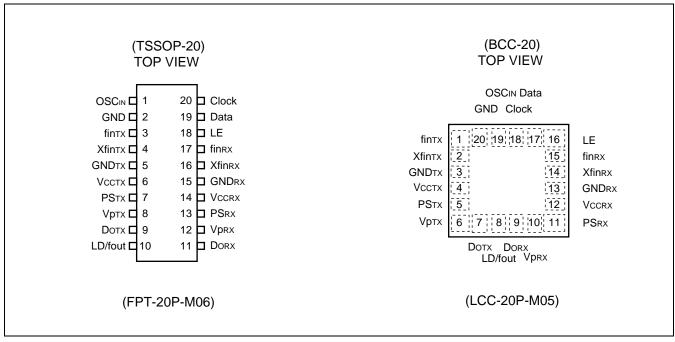
■ PACKAGES

(Continued)

• Direct power saving function : Power supply current in power saving mode

Typ 0.1
$$\mu$$
A (Vcc = Vp = 3.0 V, Ta = +25 °C), Max 10 μ A (Vcc = Vp = 3.0 V)

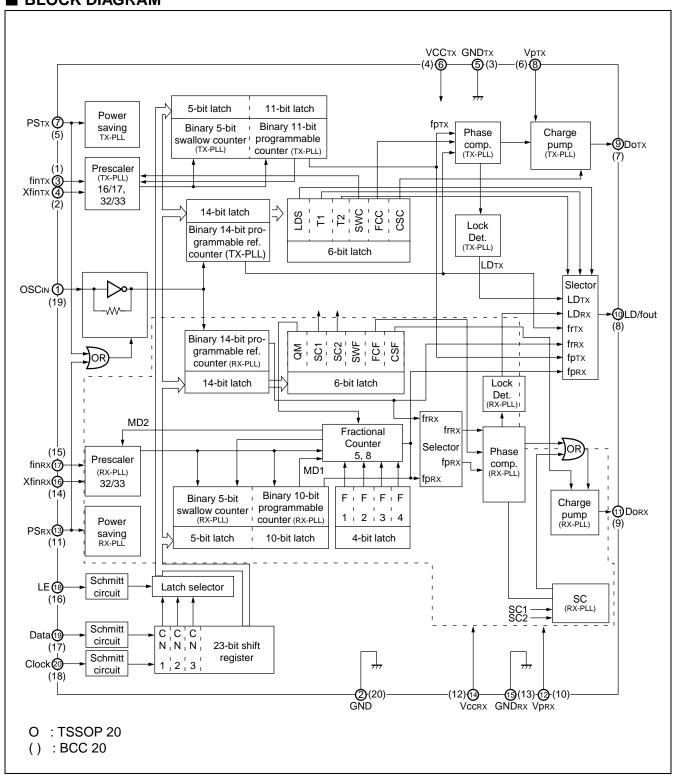
- Fractional function: selectable modulo 5 or 8/Acheiving fast lock and low phase noise (implemented in RX)
- Dual modulus prescaler: 2600 MHz prescaler (32/33 fixed) /1200 MHz prescaler (16/17 or 32/33)
- Serial input 14-bit programmable reference divider : R = 8 to 16,383
- Serial input programmable divider consisting of :


RX section - Binary 5-bit swallow counter: 0 to 31

- Binary 10-bit programmable counter: 34 to 1,023
- Binary 4-bit fractional counter numerator: 0 to 15

TX section - Binary 5-bit swallow counter: 0 to 31

- Binary 11-bit programmable counter: 3 to 2,047
- On-chip phase comparator for fast lock and low noise
- Operating temperature : Ta = -40 °C to +85 °C
- Small package Bump Chip Carrier.0 (3.4 mm \times 3.6 mm \times 0.6 mm)


■ PIN ASSIGNMENTS

■ PIN DESCRIPTION

Pin ı	10.	Pin	1/0	Decembring
TSSOP	ВСС	name	I/O	Descriptions
1	19	OSCIN	I	The programmable reference divider input pin. TCXO should be connected with an AC coupling capacitor.
2	20	GND	_	Ground pin for OSC input buffer and the shift register circuit.
3	1	fin⊤x	I	Prescaler input pin for the TX-PLL. Connection to an external VCO should be AC coupling.
4	2	Xfin⊤x	I	Prescaler complimentary input pin for the TX-PLL section. This pin should be grounded via a capacitor.
5	3	GNDTX	—	Ground pin for the TX-PLL section.
6	4	Vсстх		Power supply voltage input pin for the TX-PLL section (except for the charge pump circuit), the shift register and the oscillator input buffer. When power is OFF, latched data of TX-PLL is lost.
7	5	РЅтх	I	Power saving mode control pin for the TX-PLL section. This pin must be set at "L" when the power supply is started up. (Open is prohibited.) $PS_{TX} = "H"$; Normal mode, $PS_{TX} = "L"$; Power saving mode
8	6	Vртх	—	Power supply voltage input pin for the TX-PLL charge pump.
9	7	Dотx	0	Charge pump output pin for the TX-PLL section. Phase characteristics of the phase detector can be reversed by FC-bit.
10	8	LD/fout	0	Look detect signal output (LD) /phase comparator monitoring output (fout) pins. The output signal is selected by an LDS bit in a serial data. LDS bit = "H"; outputs fout signal, LDS bit = "L"; outputs LD signal
11	9	Dorx	0	Charge pump output pin for the RX-PLL section. Phase characteristics of the phase detector can be reversed by FC-bit.
12	10	Vprx	_	Power supply voltage input pin for the RX-PLL charge pump.
13	11	PS _{RX}	I	Power saving mode control pin for the RX-PLL section. This pin must be set at "L" when the power supply is started up. (Open is prohibited.) $PS_RX = "H" \; ; \; Normal mode, \; PS_RX = "L" \; ; \; Power saving mode$
14	12	Vccrx	_	Power supply voltage input pin for the RX-PLL section (except for the charge pump circuit) .
15	13	GND _{RX}	—	Ground pin for the RX-PLL section.
16	14	Xfin _{RX}	I	Prescaler complimentary input pin for the RX-PLL section. This pin should be grounded via a capacitor.
17	15	fin _{RX}	I	Prescaler input pin for the RX-PLL. Connection to an external VCO should be AC coupling.
18	16	LE	I	Load enable signal input pin (with the schmitt trigger circuit.) On a rising edge of load enable, data in the shift register is transferred to the corresponding latch according to the control bit in a serial data.
19	17	Data	I	Serial data input pin (with the schmitt trigger circuit.) A data is transferred to the corresponding latch (TX-ref counter, TX-prog. counter, RX-ref. counter, RX-prog. counter) according to the control bit in a serial data.
20	18	Clock	Ι	Clock input pin for the 23-bit shift register (with the schmitt trigger circuit.) One bit data is shifted into the shift register on a rising edge of the clock.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parame	otor	Symbol	Rat	ting	Unit
Paralli	etei	Symbol	Min	Max	Onit
Power supply voltage	0	Vcc	-0.5	+4.0	V
Power supply voltage	e	Vp	Vp Vcc +4.0		V
Input voltage		Vı	-0.5	Vcc + 0.5	V
Output voltage	LD/fout	Vo	GND	Vcc	V
Output voltage Do		V _{DO}	GND	Vp	V
Storage temperature)	Tstg	-55	+125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Value		Unit	Remark
Parameter	Symbol	Min	Тур	Max	Onit	Remark
Power supply voltage	Vcc	2.7	3.0	3.6	V	Vccrx = Vcctx
Fower supply voltage	Vp	Vcc	3.0	3.6	V	
Input voltage	Vı	GND	_	Vcc	V	
Operating temperature	Та	-40	_	+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

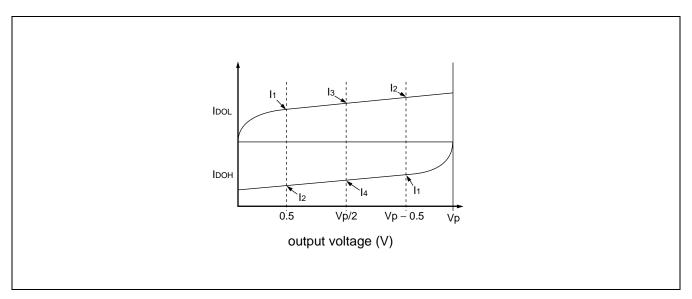
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

(Vcc = 2.7 V to 3.6 V, Ta = -40 °C to +85 °C)

Parameter		Symbol	Condition		Value		Unit
Parameter		Syllibol	Condition	Min	Тур	Max	Onit
Power supply current		І сстх *1	finτx = 910 MHz, SWc = 0, Vccτx = Vpτx = 3.0 V	1.3	2.0	2.8	mA
Fower Supply current		Iccrx *1	finrx = 2500 MHz, Vccrx = Vprx = 3.0 V	2.6	4.0	5.6	mA
Power saving current		IPSTX	PS = "L"	_	0.1 *2	10	μΑ
Power saving current		Ipsrx	PS = "L"	_	0.1 *2	10	μΑ
	fin⊤x *3	fin⊤x	TX PLL	100	_	1200	MHz
Operating frequency	fin _{RX} *3	fin _{RX}	RX PLL	1700	_	2600	MHz
	OSCIN	fosc	_	3	_	40	MHz
	fin⊤x	Pfin⊤x	TX PLL, 50 Ω system	-15	_	+2	dBm
Input sensitivity	fin _{RX}	Pfin _{RX}	RX PLL, 50 Ω system	-15	_	+2	dBm
	OSCIN	Vosc	_	0.5	_	Vcc	Vp-p
"H" level input voltage	Data,	VIH	Schmitt triger input	0.7Vcc + 0.4			V
"L" level input voltage	Clock, LE	VıL	Schmitt triger input	_	_	0.3Vcc - 0.4	V
"H" level input voltage	PSTX	VIH	_	0.7Vcc	_		.,
"L" level input voltage	PSRX	VIL	_	_	_	0.3Vcc	V
"H" level input current	Data, Clock,	I _{IH} *4	_	-1.0		+1.0	
"L" level input current	LE, PS _{TX} , PS _{RX}	l ı∟* ⁴	_	-1.0	_	+1.0	μА
"H" level input current	000	Іін	_	0	_	+100	
"L" level input current	OSCIN	I ı∟* ⁴	_	-100	_	0	μΑ
"H" level output voltage	LD/	Vон	$V_{CC} = Vp = 3.0 \text{ V}, I_{OH} = -1 \text{ mA}$	Vcc - 0.4	_	_	V
"L" level output voltage	fout	Vol	Vcc = Vp = 3.0 V, IoL = 1 mA	_	_	0.4	V
"H" level output voltage	Dотx	V _{DOH}	Vcc = Vp = 3.0 V, Idoh = -0.5 mA	Vp - 0.4	_	_	V
"L" level output voltage	Dorx	VDOL	Vcc = Vp = 3.0 V, Idol = 0.5 mA	_	_	0.4]
High impedance cutoff current	Dotx Dorx	loff	$\begin{aligned} \text{Vcc} &= \text{Vp} = 3.0 \text{ V}, \\ \text{Voff} &= 0.5 \text{ V to Vp} - 0.5 \text{ V} \end{aligned}$	_	_	2.5	nA
"H" level output current			Vcc = Vp = 3.0 V	_	_	-1.0	m ^
"L" level output current	fout	loL*4	Vcc = Vp = 3.0 V	1.0	_	_	- mA

(Continued)


(Continued)

 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, Ta = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Paramete	ar.	Symbol	Conditi	on		Value		Unit
Faramete	71	Symbol	Conditi	OII	Min	Тур	Max	Oiiit
"H" level output		І рон *4	$V_{CC} = V_p = 3.0 \text{ V},$ $V_{DOH} = V_p / 2,$	CS bit = "H"	-8.2	-6.0	-4.1	mA
current	DOTX DORX	IDOH	Ta = +25 °C	CS bit = "L"	-2.2	-1.5	-0.8	mA
"L" level output		IDOL	$V_{CC} = V_p = 3.0 \text{ V},$ $V_{DOL} = V_p / 2,$	CS bit = "H"	4.1	6.0	8.2	mA
current			Ta = +25 °C	CS bit = "L"	0.8	1.5	2.2	mA
	IDOL/IDOH	І ромт *5	V _{DO} = Vp / 2		_	3	_	%
Charge pump	vs V _{DO}	IDOVD *6	$0.5 \text{ V} \le \text{V}_{\text{DO}} \le \text{Vp} - 0$.5 V	_	10	_	%
current rate	vs Ta	І дота *7	$-40 ^{\circ}\text{C} \le \text{Ta} \le +85 ^{\circ}\text{C}$ $V_{DO} = Vp / 2$	C,	_	5	_	%

^{*1 :} Conditions ; fosc = 13 MHz, Ta = +25 °C in locking state.

^{*7 :} Vcc = Vp = 3.0 V, $Ta = +25 \, ^{\circ}C[(||I_{DO}(+85\,^{\circ}C)| - |I_{DO}(-40\,^{\circ}C)||) / 2] / [(|I_{DO}(+85\,^{\circ}C)| + |I_{DO}(-40\,^{\circ}C)|) / 2] \times 100 (\%)$ (Applied to each I_{DOL} and I_{DOH})

^{*2 :} $V_{CCTX} = V_{DTX} = V_{CCRX} = V_{DRX} = 3.0 \text{ V}$, fosc = 13 MHz, Ta = +25 °C, in power saving mode.

^{*3 :} AC coupling. 1000 pF capacitor is connected.

^{*4:} The symbol "-" (minus) means direction of current flow.

^{*5 :} Vcc = Vp = 3.0 V, $Ta = +25 °C (||I_3| - |I_4||) / [(|I_3| + |I_4|) / 2] × 100 (%)$

^{*6 :} Vcc = Vp = 3.0 V, $Ta = +25 °C [(||I_2| - |I_1||) / 2] / [(|I_1| + |I_2|) / 2] \times 100 (%) (Applied to each loot and loot)$

■ FUNCTIONAL DESCRIPTION

1. Serial Data Input

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of TX/RX-PLL sections and programmable reference dividers of TX/RX-PLL sections are controlled individually. Serial data of binary code is entered through Data pin.

On a rising edge of clock, one bit of serial data is transferred into the shift register. On a rising edge of load enable signal, the data stored in the shift register is transferred to one of latches depending upon the control bit data setting.

	The programmable reference counter for the TX-PLL	The programmable counter and the swallow counter for the TX-PLL	The programmable reference counter for the RX-PLL	The programmable counter and the swallow counter for the RX-PLL
CN1	0	1	0	1
CN2	0	0	1	1
CN3	0	0	0	0

Note: CN3 = 1 is prohibited

(1) Serial data format

 <u> </u>) Conditional Condition																					
LS	В		Direction of data shift													SB						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
0	0	0	Rc1	Rc2	Rc3	Rc4	Rc5	Rc6	Rc7	Rc8	Rc9	Rc10	R c11	Rc12	Rc13	R c14	LDS	T1	T2	SWc	FC c	CSc
1	0	0	Ac1	Ac2	Ac3	Ac4	Ac5	0	0	Nc1	Nc2	Nc3	Nc4	Nc5	Nc6	Nc7	Nc8	Nc9	Nc10	Nc11	Х	Х
0	1	0	R⊧1	R⊧2	R⊧3	R⊧4	R₅5	R⊧6	R₅7	R _F 8	R⊧9	R _F 10	R _F 11	R _F 12	R _F 13	R _F 14	QM	SC1	SC2	1	FCF	CS₅
1	1	0	A _F 1	A _F 2	A⊧3	A _F 4	A _F 5	N _F 1	N _F 2	N _F 3	N _F 4	N _F 5	N _F 6	N _F 7	N _F 8	N _F 9	N _F 10	F1	F2	F3	F4	0

Control bit (CN3)
Control bit (CN2)
Control bit (CN1)

Rc1 to Rc14 : Divide ratio setting bits for the reference counter of the TX (8 to 16383)

Ac1 to Ac5 : Divide ratio setting bits for the swallow counter of the TX (0 to 31, A < N)

Nc1 to Nc11 : Divide ratio setting bits for the programmable counter of the TX (3 to 2047)

LDS, T1, T2 : Select bits for the lock detect output or a monitoring phase comparison frequency

SWc : Divide ratio setting for the prescaler of the TX FCc : Phase control bit for the phase detector of the TX

CSc : Charge pump current select bit of the TX

R_F1 to R_F14 : Divide ratio setting bits for the reference counter of the RX (8 to 16383)

A_F1 to A_F5 : Divide ratio setting bits for the swallow counter of the RX (0 to 31, A < N - 2)

N_F1 to N_F10 : Divide ratio setting bits for the programmable counter of the RX (34 to 1023)

F1 to F4 : Fractional-N increment setting bit for the fractional accumulator (0 to 15, F < Q)

QM : Fractional-N modulus selection bit. "1" modulus = 8, "0" modulus = 5

SC1, SC2 : Spurious cancel set bit of the RX.

FC_F: Phase control bit for the phase detector of the RX.

CS_F: Charge pump current select bit of the RX

X : Dummy bit (Set "0" or "1")

Note: Data input with MSB first.

(2) Data Setting

• RX synthesizer Data Setting (Fractional-N)

The divide ratio can be calculated using the following equation:

 $f_{VCORX} = N_{TOTAL} \times fosc \div R$

 $N_{TOTAL} = P \times N + A + F / Q (A < N - 2, F < Q)$

fvcorx : Output frequency of external voltage controlled oscillator (VCO)

Ntotal : Total division ratio from prescaler input to the phase detector input

fosc : Output frequency of the reference frequency oscillator

R : Preset divide ratio of binary 14 bit reference counter (8 to 16383)

P : Preset divide ratio of modulus prescaler (32 fixed)

N : Preset divide ratio of binary 10 bit programmable counter (34 to 1023)

A : Preset divide ratio of binary 5 bit swallow counter (0 to 31)

F : A numerator of fractional-N (0 to 15)

Q : A denominator of fractional-N "QM bit = 1" modulo 8, "QM bit = 0" modulo 5

• Binary 14-bit Programmable Reference Counter Data Setting (R_F1 to R_F14)

Divide ratio (R)	R₅14	R⊧13	R₅12	R _F 11	R₅10	R⊧9	R _F 8	R₅7	R _F 6	R⊧5	R⊧4	R _F 3	R _F 2	R _F 1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
_			_				_	_		_	_	_		
52	0	0	0	0	0	0	0	0	1	1	0	1	0	0
_											_			
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 8 is prohibited.

• Fractional-N increment of the fractional accumulator Data Setting (F1 to F4)

Setting value(F)	F4	F3	F2	F1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
_	_	_	_	_
15	1	1	1	1

Note : F < Q, F5 = 0

Fractional-N modulo Data Setting (Q)

	- • •
QM	Modulo-Q
0	5
1	8

• Binary 10-bit Programable Counter Data Setting (N_F1 to N_F10)

Divide ratio (N)	N _F 10	N _F 9	N _F 8	N _F 7	N _F 6	N₅5	N _F 4	N _F 3	N _F 2	N _F 1
34	0	0	0	0	1	0	0	0	1	0
35	0	0	0	0	1	0	0	0	1	1
_	_									_
64	0	0	0	1	0	0	0	0	0	0
_										
1023	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 34 is prohibited.

• Binary 5-bit Swallow Counter Data Setting (A_F1 to A_F5)

Divide ratio (A)	A _F 5	A _F 4	A _F 3	A _F 2	A _F 1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
_	_	_	_	_	_
31	1	1	1	1	1

Note: A < N - 2

• Spurious cancel Bit Setting

Spurious cancel amount	SC1	SC2
Large	0	0
Midium	0	1
Small	1	0

Note: The bits set how much the amount of spurious cancel.

If the Large is selected, a spurious is tended to become small.

• Phase Comparator Phase Switching Data Setting

	That comparator i had onto my bata county								
	FC _F = "1"	FC _F = "0"							
	Do	Do							
fr > fp	Н	L							
fr < fp	L	Н							
fr = fp	Z	Z							
VCO polarity	1	2							

Notes : \bullet Z = High-Z

• Depending upon the VCO and LPF polarity, FC bit should be set.

• Charge pump current select Bit Setting

CS₅	Current value
1	±6.0 mA
0	±1.5 mA

• TX synthesizer Data Setting (Integer)

The divide ratio can be calculated using the following equation:

$$f_{VCOTX} = [(P \times N) + A] \times fosc \div R(A < N)$$

fvcotx : Output frequency of external voltage controlled oscillator (VCO)

P : Preset divide ratio of modulus prescaler (16 or 32)

N : Preset divide ratio of binary 11 bit programmable counter (3 to 2047)

A : Preset divide ratio of binary 5 bit swallow counter (0 to 31) fosc : Output frequency of the reference frequency oscillator

R : Preset divide ratio of binary 14 bit reference counter (8 to 16383)

• Binary 14-bit Programmable Reference Counter Data Setting (Rc1 to Rc14)

Divide ratio (R)	Rc14	Rc13	Rc12	Rc11	Rc10	Rc9	Rc8	Rc7	Rc6	Rc5	Rc4	Rc3	Rc2	Rc1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
—	_	_		_	_	_	_	_	_	_	_	_		
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 8 is prohibited.

• Binary 11-bit Programmable Counter Data Setting (Nc1 to Nc11)

Divide ratio (N)	Nc11	Nc10	Nc9	Nc8	Nc7	Nc6	Nc5	Nc4	Nc3	Nc2	Nc1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
_	_		_	_	_			_	_	_	_
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.

• Binary 5-bit Swallow Counter Data Setting (Ac1 to Ac5)

Divide ratio (A)	Ac5	Ac4	Ac3	Ac2	Ac1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
_	_	_	_	_	
31	1	1	1	1	1

Note: A < N, Ac6 to Ac7 = 0

• Prescaler Data Setting (SWc)

- 1 1000aior Bata Cotting	(5115)
SW c	Prescaler divide ratio
1	16/17
0	32/33

• Phase Comparator Phase Switching Data Setting

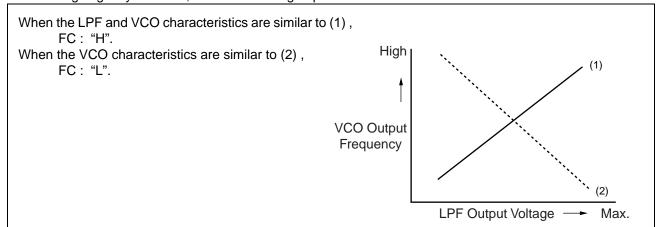
	FCc = "1"	FCc = "0"
	Do	Do
fr > fp	Н	L
fr < fp	L	Н
fr = fp	Z	Z
VCO polarity	1	2

Notes : \bullet Z = High-Z

• Depending upon the VCO and LPF polarity, FC bit should be set.

• Charge pump current select Data Setting (CSc)

CSc	Do current
1	±6.0 mA
0	±1.5 mA


• Common Setting

• LD/fout Output Select Data Setting

LD/	fout	LDS	T1	T2
LD o	output	0	_	_
	fr⊤x	1	0	0
fout	fr _{RX}	1	1	0
output	fртх	1	0	1
	fp _{RX}	1	1	1

• FC Bit Setting

When designing a synthesizer, the FC bit setting depends on the VCO and LPF characteristics

2. Power Saving Mode (Intermittent Mode Control)

• PS Pin Setting

PS pin	Status
Н	Normal mode
L	Power saving mode

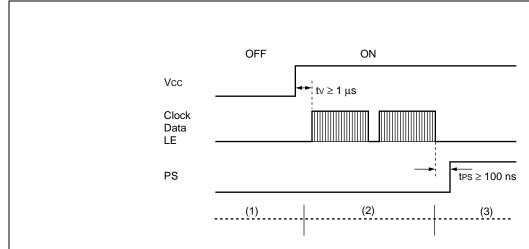
The intermittent mode control circuit reduces the PLL power consumption.

By setting the PS pin low, the device enters the power saving mode, reducing the current consumption. See "ELECTRICAL CHARACTERISTICS" for the specific value.

The phase detector output, Do, becomes high impedance.

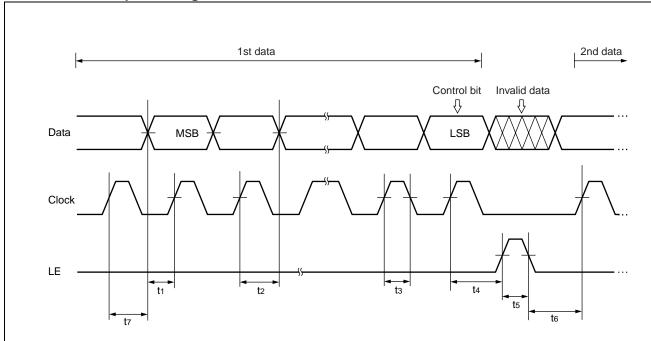
For the single PLL, the lock detector, LD, remains high, indicating a locked condition.

For the dual PLL, the lock detector, LD, is shown in "PHASE DETECTOR OUTPUT WAVEFORM the LD Output Logic table".


Setting the PS pin high releases the power saving mode, and the device works normally.

The intermittent mode control circuit also ensures a smooth start-up when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time.

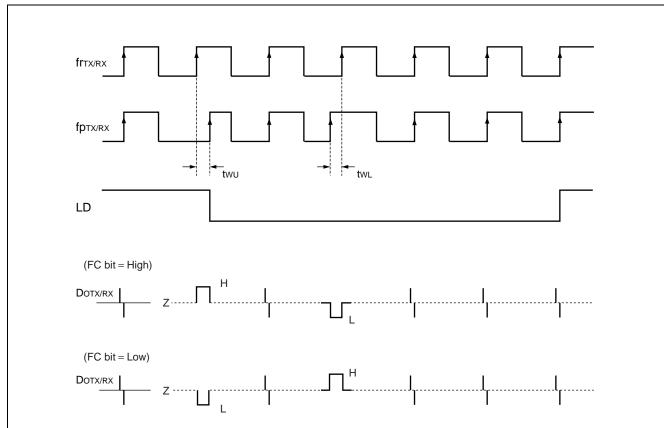
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.


Notes: • When power (Vcc) is first applied, the device must be in standby mode and PS = Low, for at least 1 μs.

• PS pin must be set "L" for Power ON.

- (1) PS = L (power saving mode) at Power ON
- (2) Set serial data 1 μ s after power supply remains stable ($Vcc \ge 2.2 \text{ V}$).
- (3) Release power saving mode (PS : L \rightarrow H) 100 ns after setting serial data.

3. Serial Data Input Timing


On the rising edge of the clock, one bit of data is tranferred into shift register.

Parameter	Min	Тур	Max	Unit
t ₁	20	_		ns
t 2	20	_	_	ns
t 3	30		_	ns
t ₄	30			ns

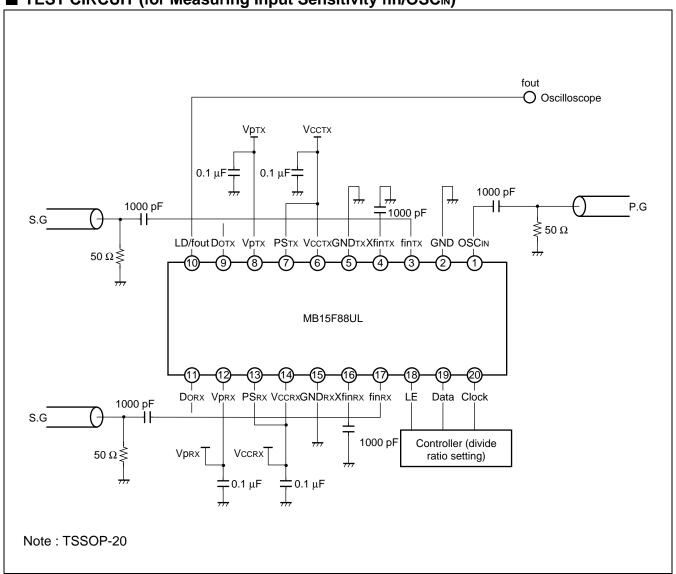
Parameter	Min	Тур	Max	Unit
t 5	100	_	_	ns
t 6	20	_		ns
t ₇	100			ns

Note: LE should be "L" when the data is transferred into the shift register.

■ PHASE DETECTOR OUTPUT WAVEFORM

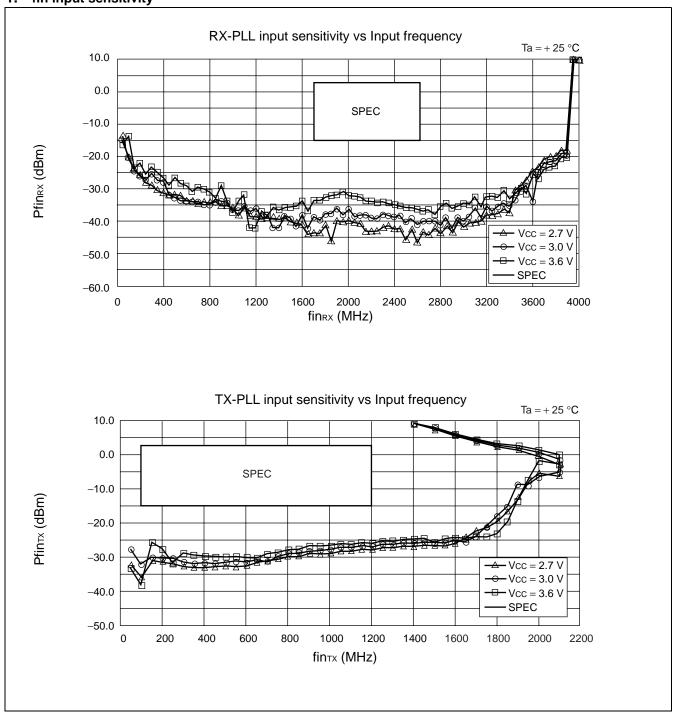
LD Output Logic Table

TX-PLL section	RX-PLL section	LD output
Locking state/Power saving state	Locking state/Power saving state	Н
Locking state/Power saving state	Unlocking state	L
Unlocking state	Locking state/Power saving state	L
Unlocking state	Unlocking state	L

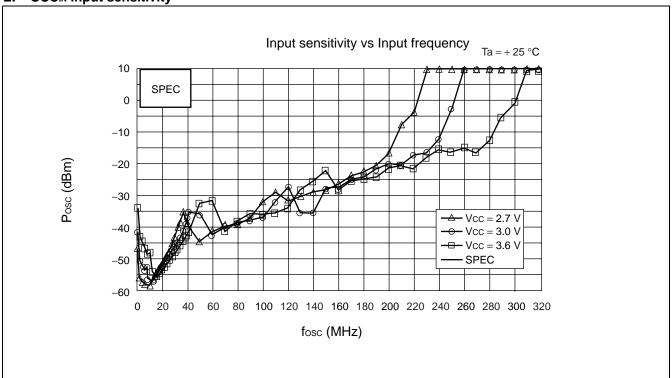

Notes : • Phase error detection range = -2π to $+2 \pi$

- Pulses on Dotx/RX signals are output to prevent dead zone.
- LD output becomes low when phase error is two or more.
- LD output becomes high when phase error is twL or less and continues to be so for three cycles or more
- \bullet $tw\mbox{\sc u}$ and $tw\mbox{\sc L}$ depend on OSCiN input frequency as follows.

 $twu \ge 2/fosc$: i.e. $twu \ge 153.8$ ns when fosc = 13 MHz $twu \le 4/fosc$: i.e. $twL \le 307.6$ ns when fosc = 13 MHz

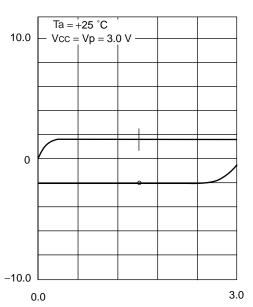

15

■ TEST CIRCUIT (for Measuring Input Sensitivity fin/OSC_{IN})



■ TYPICAL CHARACTERISTICS

1. fin input sensitivity

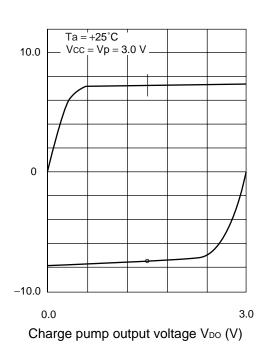


3. RX-PLL Do output current

• 1.5 mA mode

 $I_{DO} - V_{DO}$

Charge pump output current loo (mA)

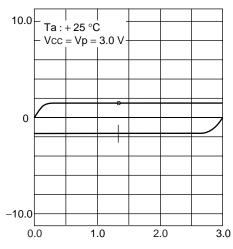


Charge pump output voltage V_{DO} (V)

• 6.0 mA mode

 $I_{DO} - V_{DO}$

Charge pump output current I⊳o (mA)

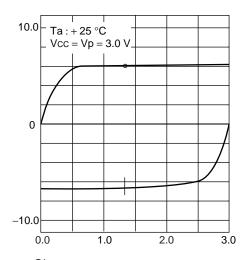


4. TX-PLL Do output current

• 1.5 mA mode

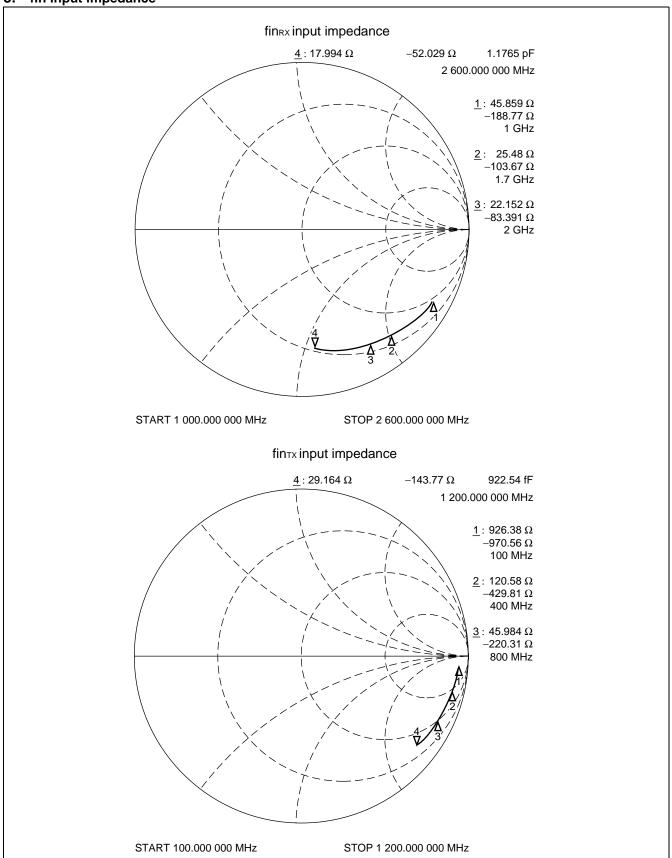
$$I_{DO} - V_{DO}$$

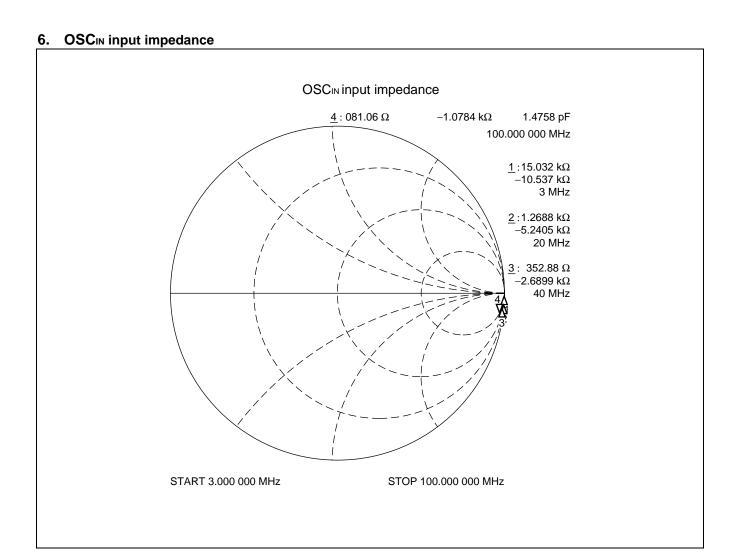
Charge pump output current loo (mA)



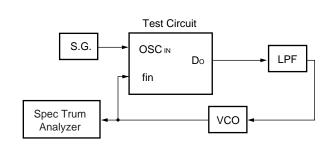
Charge pump output voltage V_{DO} (V)

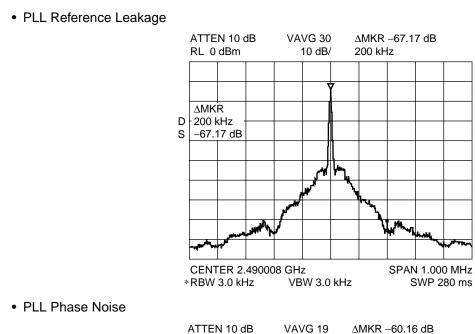
• 6.0 mA mode

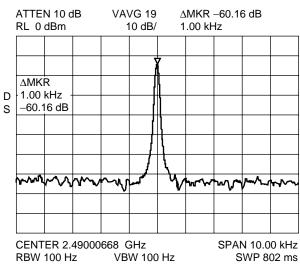

$$I_{DO} - V_{DO}$$


Charge pump output current Ipo (mA)

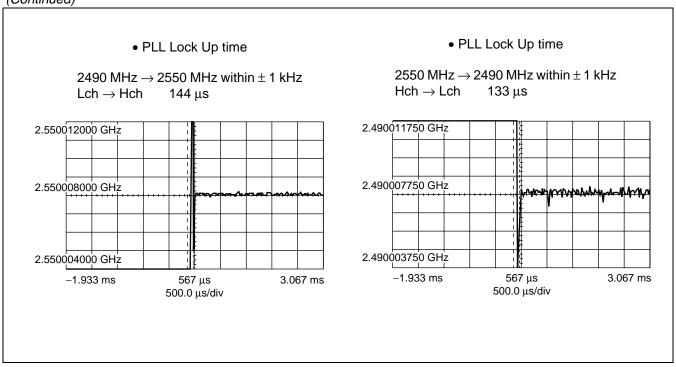
Charge pump output voltage V_{DO} (V)

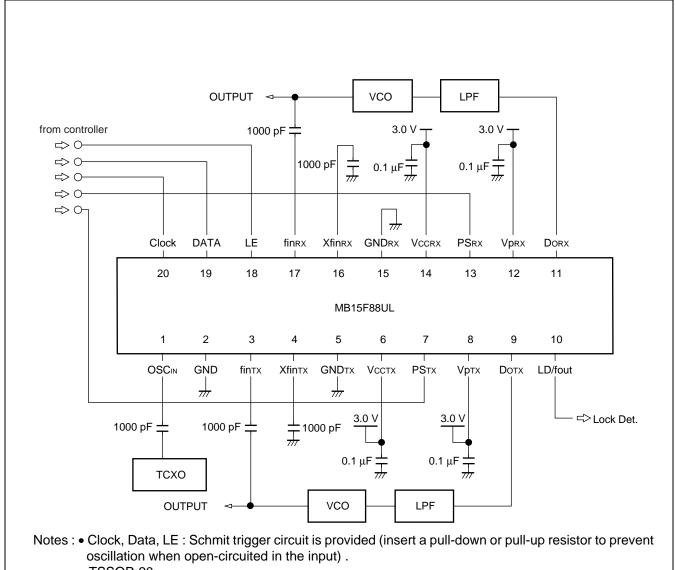

5. fin input impedance




■ REFERENCE INFORMATION

(for Lock-up Time, Phase Noise and Reference Leakage)

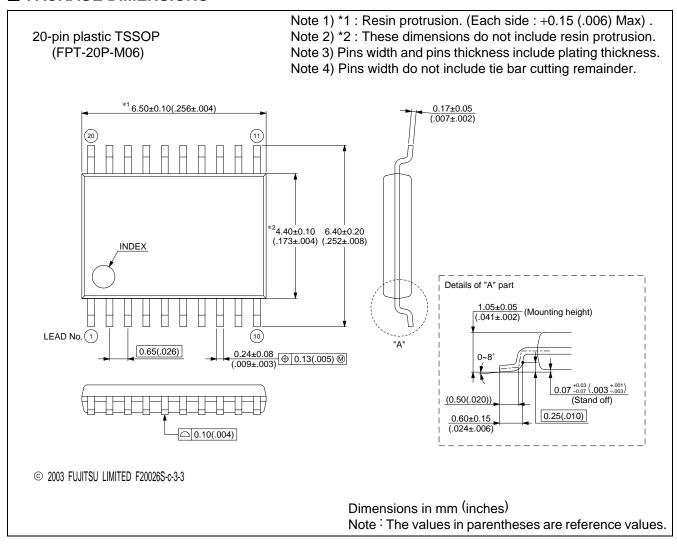

 $f_{VCO} = 2490 \text{ MHz} \qquad V_{CC} = Vp = 3.0 \text{ V}$ $K_V = 52 \text{ MHz/V} \qquad V_{VCO} = 2.5 \text{ V}$ $f_{T} = 1 \text{ MHz} \qquad T_{A} = +25 \text{ °C}$ CP : 1.5 mA mode $LPF \qquad Q = 5$ $24 \text{ k}\Omega$ Q = 5 $82 \text{ pF} \qquad 15 \text{ k}\Omega \qquad 22 \text{ pF}$



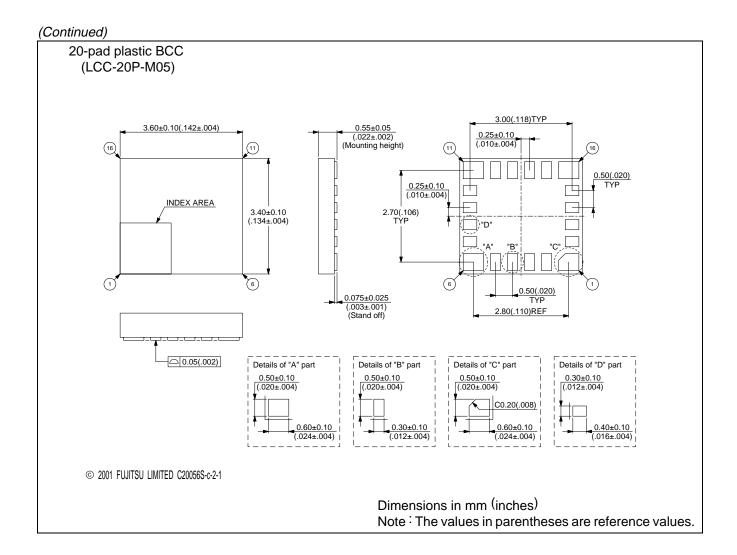
(Continued)

■ APPLICATION EXAMPLE

• TSSOP-20


■ USAGE PRECAUTIONS

- (1) VCCRX, VPRX, VCCTX and VPTX must be equal voltage.
- Even if either RX-PLL or TX-PLL is not used, power must be supplied to Vccrx, Vprx, Vcctx and Vptx to keep them equal. It is recommended that the non-use PLL is controlled by power saving function.
- (2) To protect against damage by electrostatic discharge, note the following handling precautions:
 - -Store and transport devices in conductive containers.
 - -Use properly grounded workstations, tools, and equipment.
 - -Turn off power before inserting or removing this device into or from a socket.
 - -Protect leads with conductive sheet, when transporting a board mounted device.


■ ORDERING INFORMATION

Part number	Package	Remarks
MB15F88ULPFT	20-pin plastic TSSOP (FPT-20P-M06)	
MB15F88ULPVA	20-pad plastic BCC (LCC-20P-M05)	

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0306

© FUJITSU LIMITED Printed in Japan